python基于opencv实现人脸识别

(编辑:jimmy 日期: 2025/1/11 浏览:2)

将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别。

识别图像中的人脸

#coding:utf-8
import cv2 as cv

# 读取原始图像
img = cv.imread('face.png')

# 调用熟悉的人脸分类器 识别特征类型
# 人脸 - haarcascade_frontalface_default.xml
# 人眼 - haarcascade_eye.xml
# 微笑 - haarcascade_smile.xml
face_detect = cv.CascadeClassifier('haarcascade_frontalface_default.xml')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

# 检查人脸 按照1.1倍放到 周围最小像素为5
face_zone = face_detect.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
print ('识别人脸的信息:',face_zone)

# 绘制矩形和圆形检测人脸
for x, y, w, h in face_zone:
  # 绘制矩形人脸区域 thickness表示线的粗细
  cv.rectangle(img, pt1=(x, y), pt2=(x+w, y+h),color=[0,0,255], thickness=2)
  # 绘制圆形人脸区域 radius表示半径
  cv.circle(img, center=(x+w//2, y+h//2), radius=w//2, color=[0,255,0], thickness=2)

# 设置图片可以手动调节大小
cv.namedWindow("Easmount-CSDN", 0)

# 显示图片
cv.imshow("Easmount-CSDN", img)

# 等待显示 设置任意键退出程序
cv.waitKey(0)
cv.destroyAllWindows()

python基于opencv实现人脸识别

注意,此算法只能检测正脸,并且任何算法都有一定的准确率。如上图所示,图像中有一处被错误地检测为人脸。

CascadeClassifier:

是OpenCV中人脸检测的一个级联分类器,既可以使用Haar,也可以使用LBP特征。以Haar特征分类器为基础的对象检测技术是一种非常有效的技术。它是基于机器学习且使用大量的正负样本训练得到分类器。

Haar-like矩形特征:

是用于物体检测的数字图像特征。这类矩形特征模板由两个或多个全等的黑白矩形相邻组合而成,而矩形特征值是白色矩形的灰度值的和减去黑色矩形的灰度值的和,矩形特征对一些简单的图形结构,如线段、边缘比较敏感。如果把这样的矩形放在一个非人脸区域,那么计算出的特征值应该和人脸特征值不一样,所以这些矩形就是为了把人脸特征量化,以区分人脸和非人脸。

LBP:

是一种特征提取方式,能提取出图像的局部的纹理特征,最开始的LBP算子是在3X3窗口中,取中心像素的像素值为阀值,与其周围八个像素点的像素值比较,若像素点的像素值大于阀值,则此像素点被标记为1,否则标记为0。这样就能得到一个八位二进制的码,转换为十进制即LBP码,于是得到了这个窗口的LBP值,用这个值来反映这个窗口内的纹理信息。LBPH是在原始LBP上的一个改进,在opencv支持下我们可以直接调用函数直接创建一个LBPH人脸识别的模型。比如:cv.face.LBPHFaceRecognizer_create()。

detectMultiScale:

检测人脸算法,其参数:
– image表示要检测的输入图像
– objects表示检测到的人脸目标序列
– scaleFactor表示每次图像尺寸减小的比例
– minNeighbors表示每一个目标至少要被检测到3次才算是真的目标,因为周围的像素和不同的窗口大小都可以检测到人脸
– minSize表示目标的最小尺寸
– maxSize表示目标的最大尺寸

识别视频中的人脸

将视频中每一帧图像取出,进行图像人脸识别,标记识别到的人脸,显示每一帧图像。

#coding:utf-8
import cv2 as cv
import numpy as np

# 加载视频
cap = cv.VideoCapture('wang.mp4')

# 调用熟悉的人脸分类器 识别特征类型
# 人脸 - haarcascade_frontalface_default.xml
# 人眼 - haarcascade_eye.xm
# 微笑 - haarcascade_smile.xml
face_detect = cv.CascadeClassifier('haarcascade_frontalface_default.xml')

while True:
  # 读取视频片段
  flag, frame = cap.read()
  if flag == False:
    break

  # 灰度处理
  gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)

  # 检查人脸 按照1.1倍放到 周围最小像素为5
  face_zone = face_detect.detectMultiScale(gray, scaleFactor = 1.5, minNeighbors = 8)

  # 绘制矩形和圆形检测人脸
  for x, y, w, h in face_zone:
    cv.rectangle(frame, pt1 = (x, y), pt2 = (x+w, y+h), color = [0,0,255], thickness=2)
    cv.circle(frame, center = (x + w//2, y + h//2), radius = w//2, color = [0,255,0], thickness = 2)

  # 显示图片
  cv.imshow('video', frame)
  
  # 设置退出键和展示频率
  if ord('q') == cv.waitKey(25):
    break

# 释放资源
cv.destroyAllWindows()
cap.release()

python基于opencv实现人脸识别

识别摄像头中的人脸

#coding:utf-8
import cv2 as cv

# 识别电脑摄像头并打开
cap = cv.VideoCapture(0)

# 调用熟悉的人脸分类器 识别特征类型
# 人脸 - haarcascade_frontalface_default.xml
# 人眼 - haarcascade_eye.xm
# 微笑 - haarcascade_smile.xml
face_detect = cv.CascadeClassifier('haarcascade_frontalface_default.xml')

while True:
  # 读取视频片段
  flag, frame = cap.read()
  if flag == False:
    break

  # 灰度处理
  gray = cv.cvtColor(frame, code=cv.COLOR_BGR2GRAY)

  # 检查人脸 按照1.1倍放到 周围最小像素为5
  face_zone = face_detect.detectMultiScale(gray, scaleFactor = 1.1, minNeighbors = 5)

  # 绘制矩形和圆形检测人脸
  for x, y, w, h in face_zone:
    cv.rectangle(frame, pt1 = (x, y), pt2 = (x+w, y+h), color = [0,0,255], thickness=2)
    cv.circle(frame, center = (x + w//2, y + h//2), radius = w//2, color = [0,255,0], thickness = 2)

  # 显示图片
  cv.imshow('video', frame)
  
  # 设置退出键和展示频率
  if ord('q') == cv.waitKey(40):
    break

# 释放资源
cv.destroyAllWindows()
cap.release()

以上就是python基于opencv实现人脸识别的详细内容,更多关于python opencv 人脸识别的资料请关注其它相关文章!

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。