(编辑:jimmy 日期: 2025/1/6 浏览:2)
在现实的生活中,我们可能会遇到一些美好的或是珍贵的图片被噪声干扰,比如旧照片的折痕,比如镜头上的灰尘或污渍,更或者是某些我们想为我所用但有讨厌水印,那么有没有一种办法可以消除这些噪声呢?
答案是肯定的,依然是被我们用了无数次的OpenCV这款优秀的框架。
效果预览
图片修复原理
那OpenCV究竟是怎么实现的,简单的来说就是开发者标定噪声的特征,在使用噪声周围的颜色特征推理出应该修复的图片的颜色,从而实现图片修复的。
程序实现解析
完整代码
#coding=utf-8 #图片修复 import cv2 import numpy as np path = "img/inpaint.png" img = cv2.imread(path) hight, width, depth = img.shape[0:3] #图片二值化处理,把[240, 240, 240]~[255, 255, 255]以外的颜色变成0 thresh = cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255])) #创建形状和尺寸的结构元素 kernel = np.ones((3, 3), np.uint8) #扩张待修复区域 hi_mask = cv2.dilate(thresh, kernel, iterations=1) specular = cv2.inpaint(img, hi_mask, 5, flags=cv2.INPAINT_TELEA) cv2.namedWindow("Image", 0) cv2.resizeWindow("Image", int(width / 2), int(hight / 2)) cv2.imshow("Image", img) cv2.namedWindow("newImage", 0) cv2.resizeWindow("newImage", int(width / 2), int(hight / 2)) cv2.imshow("newImage", specular) cv2.waitKey(0) cv2.destroyAllWindows()
以上就是python 实现图片修复(可用于去水印)的详细内容,更多关于python 图片修复的资料请关注其它相关文章!