Python如何读取、写入JSON数据

(编辑:jimmy 日期: 2025/1/11 浏览:2)

问题

你想读写JSON(JavaScript Object Notation)编码格式的数据。

解决方案

json 模块提供了一种很简单的方式来编码和解码JSON数据。其中两个主要的函数是 json.dumps() 和 json.loads() ,要比其他序列化函数库如pickle的接口少得多。下面演示如何将一个Python数据结构转换为JSON:

import json

data = {
 'name' : 'ACME',
 'shares' : 100,
 'price' : 542.23
}

json_str = json.dumps(data)

下面演示如何将一个JSON编码的字符串转换回一个Python数据结构:

data = json.loads(json_str)

如果你要处理的是文件而不是字符串,你可以使用json.dump()和json.load()来编码和解码JSON数据。例如:

# Writing JSON data
with open('data.json', 'w') as f:
 json.dump(data, f)

# Reading data back
with open('data.json', 'r') as f:
 data = json.load(f)

讨论

JSON编码支持的基本数据类型为None,bool,int,float和str,以及包含这些类型数据的lists,tuples和dictionaries。对于dictionaries,keys需要是字符串类型(字典中任何非字符串类型的key在编码时会先转换为字符串)。为了遵循JSON规范,你应该只编码Python的lists和dictionaries。而且,在web应用程序中,顶层对象被编码为一个字典是一个标准做法。

JSON编码的格式对于Python语法而已几乎是完全一样的,除了一些小的差异之外。比如,True会被映射为true,False被映射为false,而None会被映射为null。下面是一个例子,演示了编码后的字符串效果:

> json.dumps(False)
'false'
> d = {'a': True,
...  'b': 'Hello',
...  'c': None}
> json.dumps(d)
'{"b": "Hello", "c": null, "a": true}'
>

如果你试着去检查JSON解码后的数据,你通常很难通过简单的打印来确定它的结构,特别是当数据的嵌套结构层次很深或者包含大量的字段时。为了解决这个问题,可以考虑使用pprint模块的 pprint() 函数来代替普通的 print() 函数。它会按照key的字母顺序并以一种更加美观的方式输出。下面是一个演示如何漂亮的打印输出Twitter上搜索结果的例子:

> from urllib.request import urlopen
> import json
> u = urlopen('http://search.twitter.com/search.json"htmlcode">
> s = '{"name": "ACME", "shares": 50, "price": 490.1}'
> from collections import OrderedDict
> data = json.loads(s, object_pairs_hook=OrderedDict)
> data
OrderedDict([('name', 'ACME'), ('shares', 50), ('price', 490.1)])
>

下面是如何将一个JSON字典转换为一个Python对象例子:

> class JSONObject:
...  def __init__(self, d):
...   self.__dict__ = d
...
>
> data = json.loads(s, object_hook=JSONObject)
> data.name
'ACME'
> data.shares
50
> data.price
490.1
>

最后一个例子中,JSON解码后的字典作为一个单个参数传递给 __init__() 。然后,你就可以随心所欲的使用它了,比如作为一个实例字典来直接使用它。

在编码JSON的时候,还有一些选项很有用。如果你想获得漂亮的格式化字符串后输出,可以使用 json.dumps() 的indent参数。它会使得输出和pprint()函数效果类似。比如:

> print(json.dumps(data))
{"price": 542.23, "name": "ACME", "shares": 100}
> print(json.dumps(data, indent=4))
{
 "price": 542.23,
 "name": "ACME",
 "shares": 100
}
>

对象实例通常并不是JSON可序列化的。例如:

> class Point:
...  def __init__(self, x, y):
...   self.x = x
...   self.y = y
...
> p = Point(2, 3)
> json.dumps(p)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.3/json/__init__.py", line 226, in dumps
  return _default_encoder.encode(obj)
 File "/usr/local/lib/python3.3/json/encoder.py", line 187, in encode
  chunks = self.iterencode(o, _one_shot=True)
 File "/usr/local/lib/python3.3/json/encoder.py", line 245, in iterencode
  return _iterencode(o, 0)
 File "/usr/local/lib/python3.3/json/encoder.py", line 169, in default
  raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <__main__.Point object at 0x1006f2650> is not JSON serializable
>

如果你想序列化对象实例,你可以提供一个函数,它的输入是一个实例,返回一个可序列化的字典。例如:

def serialize_instance(obj):
 d = { '__classname__' : type(obj).__name__ }
 d.update(vars(obj))
 return d

如果你想反过来获取这个实例,可以这样做:

# Dictionary mapping names to known classes
classes = {
 'Point' : Point
}

def unserialize_object(d):
 clsname = d.pop('__classname__', None)
 if clsname:
  cls = classes[clsname]
  obj = cls.__new__(cls) # Make instance without calling __init__
  for key, value in d.items():
   setattr(obj, key, value)
   return obj
 else:
  return d

下面是如何使用这些函数的例子:

> p = Point(2,3)
> s = json.dumps(p, default=serialize_instance)
> s
'{"__classname__": "Point", "y": 3, "x": 2}'
> a = json.loads(s, object_hook=unserialize_object)
> a
<__main__.Point object at 0x1017577d0>
> a.x
2
> a.y
3
>

json 模块还有很多其他选项来控制更低级别的数字、特殊值如NaN等的解析。可以参考官方文档获取更多细节。

以上就是Python如何读取、写入JSON数据的详细内容,更多关于Python读写json数据的资料请关注其它相关文章!

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。