Python实现验证码识别

(编辑:jimmy 日期: 2025/1/11 浏览:2)

大致介绍  

在python爬虫爬取某些网站的验证码的时候可能会遇到验证码识别的问题,现在的验证码大多分为四类:

    1、计算验证码

         2、滑块验证码

    3、识图验证码

    4、语音验证码

  这篇博客主要写的就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库。

  识别验证码通常是这几个步骤:

    1、灰度处理

    2、二值化

    3、去除边框(如果有的话)

    4、降噪

    5、切割字符或者倾斜度矫正

    6、训练字体库

    7、识别

  这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要,并不一定切割验证码,识别率就会上升很多有时候还会下降

  这篇博客不涉及训练字体库的内容,请自行搜索。同样也不讲解基础的语法。

  用到的几个主要的python库: Pillow(python图像处理库)、OpenCV(高级图像处理库)、pytesseract(识别库)

灰度处理&二值化

  灰度处理,就是把彩色的验证码图片转为灰色的图片。

  二值化,是将图片处理为只有黑白两色的图片,利于后面的图像处理和识别

  在OpenCV中有现成的方法可以进行灰度处理和二值化,处理后的效果:

  代码:

# 自适应阀值二值化
def _get_dynamic_binary_image(filedir, img_name):
 filename = './out_img/' + img_name.split('.')[0] + '-binary.jpg'
 img_name = filedir + '/' + img_name
 print('.....' + img_name)
 im = cv2.imread(img_name)
 im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) #灰值化
 # 二值化
 th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
 cv2.imwrite(filename,th1)
 return th1

去除边框

  如果验证码有边框,那我们就需要去除边框,去除边框就是遍历像素点,找到四个边框上的所有点,把他们都改为白色,我这里边框是两个像素宽

  注意:在用OpenCV时,图片的矩阵点是反的,就是长和宽是颠倒的

  代码:

# 去除边框
def clear_border(img,img_name):
 filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
 h, w = img.shape[:2]
 for y in range(0, w):
 for x in range(0, h):
 if y < 2 or y > w - 2:
 img[x, y] = 255
 if x < 2 or x > h -2:
 img[x, y] = 255

 cv2.imwrite(filename,img)
 return img

降噪

  降噪是验证码处理中比较重要的一个步骤,我这里使用了点降噪和线降噪

Python实现验证码识别

  线降噪的思路就是检测这个点相邻的四个点(图中标出的绿色点),判断这四个点中是白点的个数,如果有两个以上的白色像素点,那么就认为这个点是白色的,从而去除整个干扰线,但是这种方法是有限度的,如果干扰线特别粗就没有办法去除,只能去除细的干扰线

  代码:

# 干扰线降噪
def interference_line(img, img_name):
 filename = './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
 h, w = img.shape[:2]
 # !!!opencv矩阵点是反的
 # img[1,2] 1:图片的高度,2:图片的宽度
 for y in range(1, w - 1):
 for x in range(1, h - 1):
 count = 0
 if img[x, y - 1] > 245:
 count = count + 1
 if img[x, y + 1] > 245:
 count = count + 1
 if img[x - 1, y] > 245:
 count = count + 1
 if img[x + 1, y] > 245:
 count = count + 1
 if count > 2:
 img[x, y] = 255
 cv2.imwrite(filename,img)
 return img

  点降噪的思路和线降噪的差不多,只是会针对不同的位置检测的点不一样,注释写的很清楚了

  代码:

# 点降噪
def interference_point(img,img_name, x = 0, y = 0):
 """
 9邻域框,以当前点为中心的田字框,黑点个数
 :param x:
 :param y:
 :return:
 """
 filename = './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
 # todo 判断图片的长宽度下限
 cur_pixel = img[x,y]# 当前像素点的值
 height,width = img.shape[:2]

 for y in range(0, width - 1):
 for x in range(0, height - 1):
 if y == 0: # 第一行
  if x == 0: # 左上顶点,4邻域
  # 中心点旁边3个点
  sum = int(cur_pixel)    + int(img[x, y + 1])    + int(img[x + 1, y])    + int(img[x + 1, y + 1])
  if sum <= 2 * 245:
   img[x, y] = 0
  elif x == height - 1: # 右上顶点
  sum = int(cur_pixel)    + int(img[x, y + 1])    + int(img[x - 1, y])    + int(img[x - 1, y + 1])
  if sum <= 2 * 245:
   img[x, y] = 0
  else: # 最上非顶点,6邻域
  sum = int(img[x - 1, y])    + int(img[x - 1, y + 1])    + int(cur_pixel)    + int(img[x, y + 1])    + int(img[x + 1, y])    + int(img[x + 1, y + 1])
  if sum <= 3 * 245:
   img[x, y] = 0
 elif y == width - 1: # 最下面一行
  if x == 0: # 左下顶点
  # 中心点旁边3个点
  sum = int(cur_pixel)    + int(img[x + 1, y])    + int(img[x + 1, y - 1])    + int(img[x, y - 1])
  if sum <= 2 * 245:
   img[x, y] = 0
  elif x == height - 1: # 右下顶点
  sum = int(cur_pixel)    + int(img[x, y - 1])    + int(img[x - 1, y])    + int(img[x - 1, y - 1])

  if sum <= 2 * 245:
   img[x, y] = 0
  else: # 最下非顶点,6邻域
  sum = int(cur_pixel)    + int(img[x - 1, y])    + int(img[x + 1, y])    + int(img[x, y - 1])    + int(img[x - 1, y - 1])    + int(img[x + 1, y - 1])
  if sum <= 3 * 245:
   img[x, y] = 0
 else: # y不在边界
  if x == 0: # 左边非顶点
  sum = int(img[x, y - 1])    + int(cur_pixel)    + int(img[x, y + 1])    + int(img[x + 1, y - 1])    + int(img[x + 1, y])    + int(img[x + 1, y + 1])

  if sum <= 3 * 245:
   img[x, y] = 0
  elif x == height - 1: # 右边非顶点
  sum = int(img[x, y - 1])    + int(cur_pixel)    + int(img[x, y + 1])    + int(img[x - 1, y - 1])    + int(img[x - 1, y])    + int(img[x - 1, y + 1])

  if sum <= 3 * 245:
   img[x, y] = 0
  else: # 具备9领域条件的
  sum = int(img[x - 1, y - 1])    + int(img[x - 1, y])    + int(img[x - 1, y + 1])    + int(img[x, y - 1])    + int(cur_pixel)    + int(img[x, y + 1])    + int(img[x + 1, y - 1])    + int(img[x + 1, y])    + int(img[x + 1, y + 1])
  if sum <= 4 * 245:
   img[x, y] = 0
 cv2.imwrite(filename,img)
 return img

  效果:

Python实现验证码识别

  其实到了这一步,这些字符就可以识别了,没必要进行字符切割了,现在这三种类型的验证码识别率已经达到50%以上了

字符切割   

       字符切割通常用于验证码中有粘连的字符,粘连的字符不好识别,所以我们需要将粘连的字符切割为单个的字符,在进行识别

  字符切割的思路就是找到一个黑色的点,然后在遍历与他相邻的黑色的点,直到遍历完所有的连接起来的黑色的点,找出这些点中的最高的点、最低的点、最右边的点、最左边的点,记录下这四个点,认为这是一个字符,然后在向后遍历点,直至找到黑色的点,继续以上的步骤。最后通过每个字符的四个点进行切割

  图中红色的点就是代码执行完后,标识出的每个字符的四个点,然后就会根据这四个点进行切割(图中画的有些误差,懂就好)

  但是也可以看到,m2是粘连的,代码认为他是一个字符,所以我们需要对每个字符的宽度进行检测,如果他的宽度过宽,我们就认为他是两个粘连在一起的字符,并将它在从中间切割

  确定每个字符的四个点代码:

def cfs(im,x_fd,y_fd):
 '''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
 '''

 # print('**********')

 xaxis=[]
 yaxis=[]
 visited =set()
 q = Queue()
 q.put((x_fd, y_fd))
 visited.add((x_fd, y_fd))
 offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域

 while not q.empty():
 x,y=q.get()

 for xoffset,yoffset in offsets:
  x_neighbor,y_neighbor = x+xoffset,y+yoffset

  if (x_neighbor,y_neighbor) in (visited):
  continue # 已经访问过了

  visited.add((x_neighbor, y_neighbor))

  try:
  if im[x_neighbor, y_neighbor] == 0:
   xaxis.append(x_neighbor)
   yaxis.append(y_neighbor)
   q.put((x_neighbor,y_neighbor))

  except IndexError:
  pass
 # print(xaxis)
 if (len(xaxis) == 0 | len(yaxis) == 0):
 xmax = x_fd + 1
 xmin = x_fd
 ymax = y_fd + 1
 ymin = y_fd

 else:
 xmax = max(xaxis)
 xmin = min(xaxis)
 ymax = max(yaxis)
 ymin = min(yaxis)
 #ymin,ymax=sort(yaxis)

 return ymax,ymin,xmax,xmin

def detectFgPix(im,xmax):
 '''搜索区块起点
 '''

 h,w = im.shape[:2]
 for y_fd in range(xmax+1,w):
 for x_fd in range(h):
  if im[x_fd,y_fd] == 0:
  return x_fd,y_fd

def CFS(im):
 '''切割字符位置
 '''

 zoneL=[]#各区块长度L列表
 zoneWB=[]#各区块的X轴[起始,终点]列表
 zoneHB=[]#各区块的Y轴[起始,终点]列表

 xmax=0#上一区块结束黑点横坐标,这里是初始化
 for i in range(10):

 try:
  x_fd,y_fd = detectFgPix(im,xmax)
  # print(y_fd,x_fd)
  xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
  L = xmax - xmin
  H = ymax - ymin
  zoneL.append(L)
  zoneWB.append([xmin,xmax])
  zoneHB.append([ymin,ymax])

 except TypeError:
  return zoneL,zoneWB,zoneHB

 return zoneL,zoneWB,zoneHB

  分割粘连字符代码:

# 切割的位置
 im_position = CFS(im)

 maxL = max(im_position[0])
 minL = min(im_position[0])

 # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
 if(maxL > minL + minL * 0.7):
 maxL_index = im_position[0].index(maxL)
 minL_index = im_position[0].index(minL)
 # 设置字符的宽度
 im_position[0][maxL_index] = maxL // 2
 im_position[0].insert(maxL_index + 1, maxL // 2)
 # 设置字符X轴[起始,终点]位置
 im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
 im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
 # 设置字符的Y轴[起始,终点]位置
 im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])

 # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
 cutting_img(im,im_position,img_name,1,1)

  切割粘连字符代码:

def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
 filename = './out_img/' + img.split('.')[0]
 # 识别出的字符个数
 im_number = len(im_position[1])
 # 切割字符
 for i in range(im_number):
 im_start_X = im_position[1][i][0] - xoffset
 im_end_X = im_position[1][i][1] + xoffset
 im_start_Y = im_position[2][i][0] - yoffset
 im_end_Y = im_position[2][i][1] + yoffset
 cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
 cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)

识别

  识别用的是typesseract库,主要识别一行字符和单个字符时的参数设置,识别中英文的参数设置,代码很简单就一行,我这里大多是filter文件的操作

  代码:

# 识别验证码
 cutting_img_num = 0
 for file in os.listdir('./out_img'):
 str_img = ''
 if fnmatch(file, '%s-cutting-*.jpg' % img_name.split('.')[0]):
  cutting_img_num += 1
 for i in range(cutting_img_num):
 try:
  file = './out_img/%s-cutting-%s.jpg' % (img_name.split('.')[0], i)
  # 识别字符
  str_img = str_img + image_to_string(Image.open(file),lang = 'eng', config='-psm 10') #单个字符是10,一行文本是7
 except Exception as err:
  pass
 print('切图:%s' % cutting_img_num)
 print('识别为:%s' % str_img)

  最后这种粘连字符的识别率是在30%左右,而且这种只是处理两个字符粘连,如果有两个以上的字符粘连还不能识别,但是根据字符宽度判别的话也不难,有兴趣的可以试一下

  无需切割字符识别的效果:

Python实现验证码识别

 Python实现验证码识别

  需要切割字符的识别效果:

Python实现验证码识别

Python实现验证码识别

  这种只是能够识别简单验证码,复杂的验证码还要靠大家了

  参考资料:

    1、https://www.jb51.net/article/141621.htm

  本来参考了挺多的资料,但是时间长了就找不到了,如果有人发现了,可以告诉我,我再添加

  使用方法:

   1、将要识别的验证码图片放入与脚本同级的img文件夹中,创建out_img文件夹
   2、python3 filename
     3、二值化、降噪等各个阶段的图片将存储在out_img文件夹中,最终识别结果会打印到屏幕上

  最后附上源码(带切割,不想要切割的就自己修改吧):

from PIL import Image
from pytesseract import *
from fnmatch import fnmatch
from queue import Queue
import matplotlib.pyplot as plt
import cv2
import time
import os





def clear_border(img,img_name):
 '''去除边框
 '''

 filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
 h, w = img.shape[:2]
 for y in range(0, w):
 for x in range(0, h):
 # if y ==0 or y == w -1 or y == w - 2:
 if y < 4 or y > w -4:
 img[x, y] = 255
 # if x == 0 or x == h - 1 or x == h - 2:
 if x < 4 or x > h - 4:
 img[x, y] = 255

 cv2.imwrite(filename,img)
 return img


def interference_line(img, img_name):
 '''
 干扰线降噪
 '''

 filename = './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
 h, w = img.shape[:2]
 # !!!opencv矩阵点是反的
 # img[1,2] 1:图片的高度,2:图片的宽度
 for y in range(1, w - 1):
 for x in range(1, h - 1):
 count = 0
 if img[x, y - 1] > 245:
 count = count + 1
 if img[x, y + 1] > 245:
 count = count + 1
 if img[x - 1, y] > 245:
 count = count + 1
 if img[x + 1, y] > 245:
 count = count + 1
 if count > 2:
 img[x, y] = 255
 cv2.imwrite(filename,img)
 return img

def interference_point(img,img_name, x = 0, y = 0):
 """点降噪
 9邻域框,以当前点为中心的田字框,黑点个数
 :param x:
 :param y:
 :return:
 """
 filename = './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
 # todo 判断图片的长宽度下限
 cur_pixel = img[x,y]# 当前像素点的值
 height,width = img.shape[:2]

 for y in range(0, width - 1):
 for x in range(0, height - 1):
 if y == 0: # 第一行
  if x == 0: # 左上顶点,4邻域
  # 中心点旁边3个点
  sum = int(cur_pixel)    + int(img[x, y + 1])    + int(img[x + 1, y])    + int(img[x + 1, y + 1])
  if sum <= 2 * 245:
   img[x, y] = 0
  elif x == height - 1: # 右上顶点
  sum = int(cur_pixel)    + int(img[x, y + 1])    + int(img[x - 1, y])    + int(img[x - 1, y + 1])
  if sum <= 2 * 245:
   img[x, y] = 0
  else: # 最上非顶点,6邻域
  sum = int(img[x - 1, y])    + int(img[x - 1, y + 1])    + int(cur_pixel)    + int(img[x, y + 1])    + int(img[x + 1, y])    + int(img[x + 1, y + 1])
  if sum <= 3 * 245:
   img[x, y] = 0
 elif y == width - 1: # 最下面一行
  if x == 0: # 左下顶点
  # 中心点旁边3个点
  sum = int(cur_pixel)    + int(img[x + 1, y])    + int(img[x + 1, y - 1])    + int(img[x, y - 1])
  if sum <= 2 * 245:
   img[x, y] = 0
  elif x == height - 1: # 右下顶点
  sum = int(cur_pixel)    + int(img[x, y - 1])    + int(img[x - 1, y])    + int(img[x - 1, y - 1])

  if sum <= 2 * 245:
   img[x, y] = 0
  else: # 最下非顶点,6邻域
  sum = int(cur_pixel)    + int(img[x - 1, y])    + int(img[x + 1, y])    + int(img[x, y - 1])    + int(img[x - 1, y - 1])    + int(img[x + 1, y - 1])
  if sum <= 3 * 245:
   img[x, y] = 0
 else: # y不在边界
  if x == 0: # 左边非顶点
  sum = int(img[x, y - 1])    + int(cur_pixel)    + int(img[x, y + 1])    + int(img[x + 1, y - 1])    + int(img[x + 1, y])    + int(img[x + 1, y + 1])

  if sum <= 3 * 245:
   img[x, y] = 0
  elif x == height - 1: # 右边非顶点
  sum = int(img[x, y - 1])    + int(cur_pixel)    + int(img[x, y + 1])    + int(img[x - 1, y - 1])    + int(img[x - 1, y])    + int(img[x - 1, y + 1])

  if sum <= 3 * 245:
   img[x, y] = 0
  else: # 具备9领域条件的
  sum = int(img[x - 1, y - 1])    + int(img[x - 1, y])    + int(img[x - 1, y + 1])    + int(img[x, y - 1])    + int(cur_pixel)    + int(img[x, y + 1])    + int(img[x + 1, y - 1])    + int(img[x + 1, y])    + int(img[x + 1, y + 1])
  if sum <= 4 * 245:
   img[x, y] = 0
 cv2.imwrite(filename,img)
 return img

def _get_dynamic_binary_image(filedir, img_name):
 '''
 自适应阀值二值化
 '''

 filename = './out_img/' + img_name.split('.')[0] + '-binary.jpg'
 img_name = filedir + '/' + img_name
 print('.....' + img_name)
 im = cv2.imread(img_name)
 im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

 th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
 cv2.imwrite(filename,th1)
 return th1

def _get_static_binary_image(img, threshold = 140):
 '''
 手动二值化
 '''

 img = Image.open(img)
 img = img.convert('L')
 pixdata = img.load()
 w, h = img.size
 for y in range(h):
 for x in range(w):
 if pixdata[x, y] < threshold:
 pixdata[x, y] = 0
 else:
 pixdata[x, y] = 255

 return img


def cfs(im,x_fd,y_fd):
 '''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
 '''

 # print('**********')

 xaxis=[]
 yaxis=[]
 visited =set()
 q = Queue()
 q.put((x_fd, y_fd))
 visited.add((x_fd, y_fd))
 offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域

 while not q.empty():
 x,y=q.get()

 for xoffset,yoffset in offsets:
  x_neighbor,y_neighbor = x+xoffset,y+yoffset

  if (x_neighbor,y_neighbor) in (visited):
  continue # 已经访问过了

  visited.add((x_neighbor, y_neighbor))

  try:
  if im[x_neighbor, y_neighbor] == 0:
   xaxis.append(x_neighbor)
   yaxis.append(y_neighbor)
   q.put((x_neighbor,y_neighbor))

  except IndexError:
  pass
 # print(xaxis)
 if (len(xaxis) == 0 | len(yaxis) == 0):
 xmax = x_fd + 1
 xmin = x_fd
 ymax = y_fd + 1
 ymin = y_fd

 else:
 xmax = max(xaxis)
 xmin = min(xaxis)
 ymax = max(yaxis)
 ymin = min(yaxis)
 #ymin,ymax=sort(yaxis)

 return ymax,ymin,xmax,xmin

def detectFgPix(im,xmax):
 '''搜索区块起点
 '''

 h,w = im.shape[:2]
 for y_fd in range(xmax+1,w):
 for x_fd in range(h):
  if im[x_fd,y_fd] == 0:
  return x_fd,y_fd

def CFS(im):
 '''切割字符位置
 '''

 zoneL=[]#各区块长度L列表
 zoneWB=[]#各区块的X轴[起始,终点]列表
 zoneHB=[]#各区块的Y轴[起始,终点]列表

 xmax=0#上一区块结束黑点横坐标,这里是初始化
 for i in range(10):

 try:
  x_fd,y_fd = detectFgPix(im,xmax)
  # print(y_fd,x_fd)
  xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
  L = xmax - xmin
  H = ymax - ymin
  zoneL.append(L)
  zoneWB.append([xmin,xmax])
  zoneHB.append([ymin,ymax])

 except TypeError:
  return zoneL,zoneWB,zoneHB

 return zoneL,zoneWB,zoneHB


def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
 filename = './out_img/' + img.split('.')[0]
 # 识别出的字符个数
 im_number = len(im_position[1])
 # 切割字符
 for i in range(im_number):
 im_start_X = im_position[1][i][0] - xoffset
 im_end_X = im_position[1][i][1] + xoffset
 im_start_Y = im_position[2][i][0] - yoffset
 im_end_Y = im_position[2][i][1] + yoffset
 cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
 cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)



def main():
 filedir = './easy_img'

 for file in os.listdir(filedir):
 if fnmatch(file, '*.jpeg'):
 img_name = file

 # 自适应阈值二值化
 im = _get_dynamic_binary_image(filedir, img_name)

 # 去除边框
 im = clear_border(im,img_name)

 # 对图片进行干扰线降噪
 im = interference_line(im,img_name)

 # 对图片进行点降噪
 im = interference_point(im,img_name)

 # 切割的位置
 im_position = CFS(im)

 maxL = max(im_position[0])
 minL = min(im_position[0])

 # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
 if(maxL > minL + minL * 0.7):
 maxL_index = im_position[0].index(maxL)
 minL_index = im_position[0].index(minL)
 # 设置字符的宽度
 im_position[0][maxL_index] = maxL // 2
 im_position[0].insert(maxL_index + 1, maxL // 2)
 # 设置字符X轴[起始,终点]位置
 im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
 im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
 # 设置字符的Y轴[起始,终点]位置
 im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])

 # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
 cutting_img(im,im_position,img_name,1,1)

 # 识别验证码
 cutting_img_num = 0
 for file in os.listdir('./out_img'):
 str_img = ''
 if fnmatch(file, '%s-cutting-*.jpg' % img_name.split('.')[0]):
  cutting_img_num += 1
 for i in range(cutting_img_num):
 try:
  file = './out_img/%s-cutting-%s.jpg' % (img_name.split('.')[0], i)
  # 识别验证码
  str_img = str_img + image_to_string(Image.open(file),lang = 'eng', config='-psm 10') #单个字符是10,一行文本是7
 except Exception as err:
  pass
 print('切图:%s' % cutting_img_num)
 print('识别为:%s' % str_img)

if __name__ == '__main__':
 main()

以上就是Python实现验证码识别的详细内容,更多关于Python验证码识别的资料请关注其它相关文章!

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。