Keras:Unet网络实现多类语义分割方式

(编辑:jimmy 日期: 2025/1/11 浏览:2)

1 介绍

U-Net最初是用来对医学图像的语义分割,后来也有人将其应用于其他领域。但大多还是用来进行二分类,即将原始图像分成两个灰度级或者色度,依次找到图像中感兴趣的目标部分。

本文主要利用U-Net网络结构实现了多类的语义分割,并展示了部分测试效果,希望对你有用!

2 源代码

(1)训练模型

from __future__ import print_function
import os
import datetime
import numpy as np
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose, AveragePooling2D, Dropout,  BatchNormalization
from keras.optimizers import Adam
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from keras.layers.advanced_activations import LeakyReLU, ReLU
import cv2
 
PIXEL = 512 #set your image size
BATCH_SIZE = 5
lr = 0.001
EPOCH = 100
X_CHANNEL = 3 # training images channel
Y_CHANNEL = 1 # label iamges channel
X_NUM = 422 # your traning data number
 
pathX = 'I:\\Pascal VOC Dataset\\train1\\images\\' #change your file path
pathY = 'I:\\Pascal VOC Dataset\\train1\\SegmentationObject\\' #change your file path
 
#data processing
def generator(pathX, pathY,BATCH_SIZE):
 while 1:
  X_train_files = os.listdir(pathX)
  Y_train_files = os.listdir(pathY)
  a = (np.arange(1, X_NUM))
  X = []
  Y = []
  for i in range(BATCH_SIZE):
   index = np.random.choice(a)
   # print(index)
   img = cv2.imread(pathX + X_train_files[index], 1)
   img = np.array(img).reshape(PIXEL, PIXEL, X_CHANNEL)
   X.append(img)
   img1 = cv2.imread(pathY + Y_train_files[index], 1)
   img1 = np.array(img1).reshape(PIXEL, PIXEL, Y_CHANNEL)
   Y.append(img1)
 
  X = np.array(X)
  Y = np.array(Y)
  yield X, Y
 
 #creat unet network
inputs = Input((PIXEL, PIXEL, 3))
conv1 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
pool1 = AveragePooling2D(pool_size=(2, 2))(conv1) # 16
 
conv2 = BatchNormalization(momentum=0.99)(pool1)
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = BatchNormalization(momentum=0.99)(conv2)
conv2 = Conv2D(64, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = Dropout(0.02)(conv2)
pool2 = AveragePooling2D(pool_size=(2, 2))(conv2) # 8
 
conv3 = BatchNormalization(momentum=0.99)(pool2)
conv3 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
conv3 = BatchNormalization(momentum=0.99)(conv3)
conv3 = Conv2D(128, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
conv3 = Dropout(0.02)(conv3)
pool3 = AveragePooling2D(pool_size=(2, 2))(conv3) # 4
 
conv4 = BatchNormalization(momentum=0.99)(pool3)
conv4 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = BatchNormalization(momentum=0.99)(conv4)
conv4 = Conv2D(256, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = Dropout(0.02)(conv4)
pool4 = AveragePooling2D(pool_size=(2, 2))(conv4)
 
conv5 = BatchNormalization(momentum=0.99)(pool4)
conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
conv5 = BatchNormalization(momentum=0.99)(conv5)
conv5 = Conv2D(512, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
conv5 = Dropout(0.02)(conv5)
pool4 = AveragePooling2D(pool_size=(2, 2))(conv4)
# conv5 = Conv2D(35, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
# drop4 = Dropout(0.02)(conv5)
pool4 = AveragePooling2D(pool_size=(2, 2))(pool3) # 2
pool5 = AveragePooling2D(pool_size=(2, 2))(pool4) # 1
 
conv6 = BatchNormalization(momentum=0.99)(pool5)
conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
 
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = (UpSampling2D(size=(2, 2))(conv7)) # 2
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7)
merge7 = concatenate([pool4, conv7], axis=3)
 
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
up8 = (UpSampling2D(size=(2, 2))(conv8)) # 4
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8)
merge8 = concatenate([pool3, conv8], axis=3)
 
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
up9 = (UpSampling2D(size=(2, 2))(conv9)) # 8
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up9)
merge9 = concatenate([pool2, conv9], axis=3)
 
conv10 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
up10 = (UpSampling2D(size=(2, 2))(conv10)) # 16
conv10 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up10)
 
conv11 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10)
up11 = (UpSampling2D(size=(2, 2))(conv11)) # 32
conv11 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up11)
 
# conv12 = Conv2D(3, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv11)
conv12 = Conv2D(3, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv11)
 
model = Model(input=inputs, output=conv12)
print(model.summary())
model.compile(optimizer=Adam(lr=1e-3), loss='mse', metrics=['accuracy'])
 
history = model.fit_generator(generator(pathX, pathY,BATCH_SIZE),
        steps_per_epoch=600, nb_epoch=EPOCH)
end_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 
 #save your training model
model.save(r'V1_828.h5')
 
#save your loss data
mse = np.array((history.history['loss']))
np.save(r'V1_828.npy', mse)

(2)测试模型

from keras.models import load_model
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
 
model = load_model('V1_828.h5')
test_images_path = 'I:\\Pascal VOC Dataset\\test\\test_images\\'
test_gt_path = 'I:\\Pascal VOC Dataset\\test\\SegmentationObject\\'
pre_path = 'I:\\Pascal VOC Dataset\\test\\pre\\'
 
X = []
for info in os.listdir(test_images_path):
 A = cv2.imread(test_images_path + info)
 X.append(A)
 # i += 1
X = np.array(X)
print(X.shape)
Y = model.predict(X)
 
groudtruth = []
for info in os.listdir(test_gt_path):
 A = cv2.imread(test_gt_path + info)
 groudtruth.append(A)
groudtruth = np.array(groudtruth)
 
i = 0
for info in os.listdir(test_images_path):
 cv2.imwrite(pre_path + info,Y[i])
 i += 1
 
a = range(10)
n = np.random.choice(a)
cv2.imwrite('prediction.png',Y[n])
cv2.imwrite('groudtruth.png',groudtruth[n])
fig, axs = plt.subplots(1, 3)
# cnt = 1
# for j in range(1):
axs[0].imshow(np.abs(X[n]))
axs[0].axis('off')
axs[1].imshow(np.abs(Y[n]))
axs[1].axis('off')
axs[2].imshow(np.abs(groudtruth[n]))
axs[2].axis('off')
 # cnt += 1
fig.savefig("imagestest.png")
plt.close()

3 效果展示

说明:从左到右依次是预测图像,真实图像,标注图像。可以看出,对于部分数据的分割效果还有待改进,主要原因还是数据集相对复杂,模型难于找到其中的规律。

Keras:Unet网络实现多类语义分割方式

以上这篇Keras:Unet网络实现多类语义分割方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。