使用keras实现孪生网络中的权值共享教程

(编辑:jimmy 日期: 2025/1/11 浏览:2)

首先声明,这里的权值共享指的不是CNN原理中的共享权值,而是如何在构建类似于Siamese Network这样的多分支网络,且分支结构相同时,如何使用keras使分支的权重共享。

Functional API

为达到上述的目的,建议使用keras中的Functional API,当然Sequential 类型的模型也可以使用,本篇博客将主要以Functional API为例讲述。

keras的多分支权值共享功能实现,官方文档介绍

上面是官方的链接,本篇博客也是基于上述官方文档,实现的此功能。(插一句,keras虽然有中文文档,但中文文档已停更,且中文文档某些函数介绍不全,建议直接看英文官方文档)

不共享参数的模型

以MatchNet网络结构为例子,为方便显示,将卷积模块个数减为2个。首先是展示不共享参数的模型,以便观看完整的网络结构。

整体的网络结构如下所示:

代码包含两部分,第一部分定义了两个函数,FeatureNetwork()生成特征提取网络,ClassiFilerNet()生成决策网络或称度量网络。网络结构的可视化在博客末尾。在ClassiFilerNet()函数中,可以看到调用了两次FeatureNetwork()函数,keras.models.Model也被使用的两次,因此生成的input1和input2是两个完全独立的模型分支,参数是不共享的。

from keras.models import Sequential
from keras.layers import merge, Conv2D, MaxPool2D, Activation, Dense, concatenate, Flatten
from keras.layers import Input
from keras.models import Model
from keras.utils import np_utils
import tensorflow as tf
import keras
from keras.datasets import mnist
import numpy as np
from keras.utils import np_utils
from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.utils.vis_utils import plot_model

# ---------------------函数功能区-------------------------
def FeatureNetwork():
  """生成特征提取网络"""
  """这是根据,MNIST数据调整的网络结构,下面注释掉的部分是,原始的Matchnet网络中feature network结构"""
  inp = Input(shape = (28, 28, 1), name='FeatureNet_ImageInput')
  models = Conv2D(filters=24, kernel_size=(3, 3), strides=1, padding='same')(inp)
  models = Activation('relu')(models)
  models = MaxPool2D(pool_size=(3, 3))(models)

  models = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(models)
  # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
  models = Activation('relu')(models)

  models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
  models = Activation('relu')(models)

  models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
  models = Activation('relu')(models)
  models = Flatten()(models)
  models = Dense(512)(models)
  models = Activation('relu')(models)
  model = Model(inputs=inp, outputs=models)
  return model

def ClassiFilerNet(): # add classifier Net
  """生成度量网络和决策网络,其实maychnet是两个网络结构,一个是特征提取层(孪生),一个度量层+匹配层(统称为决策层)"""
  input1 = FeatureNetwork()           # 孪生网络中的一个特征提取
  input2 = FeatureNetwork()           # 孪生网络中的另一个特征提取
  for layer in input2.layers:          # 这个for循环一定要加,否则网络重名会出错。
    layer.name = layer.name + str("_2")
  inp1 = input1.input
  inp2 = input2.input
  merge_layers = concatenate([input1.output, input2.output])    # 进行融合,使用的是默认的sum,即简单的相加
  fc1 = Dense(1024, activation='relu')(merge_layers)
  fc2 = Dense(1024, activation='relu')(fc1)
  fc3 = Dense(2, activation='softmax')(fc2)

  class_models = Model(inputs=[inp1, inp2], outputs=[fc3])
  return class_models

# ---------------------主调区-------------------------
matchnet = ClassiFilerNet()
matchnet.summary() # 打印网络结构
plot_model(matchnet, to_file='G:/csdn攻略/picture/model.png') # 网络结构输出成png图片

共享参数的模型

FeatureNetwork()的功能和上面的功能相同,为方便选择,在ClassiFilerNet()函数中加入了判断是否使用共享参数模型功能,令reuse=True,便使用的是共享参数的模型。

关键地方就在,只使用的一次Model,也就是说只创建了一次模型,虽然输入了两个输入,但其实使用的是同一个模型,因此权重共享的。

from keras.models import Sequential
from keras.layers import merge, Conv2D, MaxPool2D, Activation, Dense, concatenate, Flatten
from keras.layers import Input
from keras.models import Model
from keras.utils import np_utils
import tensorflow as tf
import keras
from keras.datasets import mnist
import numpy as np
from keras.utils import np_utils
from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.utils.vis_utils import plot_model

# ----------------函数功能区-----------------------
def FeatureNetwork():
  """生成特征提取网络"""
  """这是根据,MNIST数据调整的网络结构,下面注释掉的部分是,原始的Matchnet网络中feature network结构"""
  inp = Input(shape = (28, 28, 1), name='FeatureNet_ImageInput')
  models = Conv2D(filters=24, kernel_size=(3, 3), strides=1, padding='same')(inp)
  models = Activation('relu')(models)
  models = MaxPool2D(pool_size=(3, 3))(models)

  models = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(models)
  # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
  models = Activation('relu')(models)

  models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
  models = Activation('relu')(models)

  models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
  models = Activation('relu')(models)

  # models = Conv2D(64, kernel_size=(3, 3), strides=2, padding='valid')(models)
  # models = Activation('relu')(models)
  # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
  models = Flatten()(models)
  models = Dense(512)(models)
  models = Activation('relu')(models)
  model = Model(inputs=inp, outputs=models)
  return model

def ClassiFilerNet(reuse=False): # add classifier Net
  """生成度量网络和决策网络,其实maychnet是两个网络结构,一个是特征提取层(孪生),一个度量层+匹配层(统称为决策层)"""

  if reuse:
    inp = Input(shape=(28, 28, 1), name='FeatureNet_ImageInput')
    models = Conv2D(filters=24, kernel_size=(3, 3), strides=1, padding='same')(inp)
    models = Activation('relu')(models)
    models = MaxPool2D(pool_size=(3, 3))(models)

    models = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(models)
    # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
    models = Activation('relu')(models)

    models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
    models = Activation('relu')(models)

    models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
    models = Activation('relu')(models)

    # models = Conv2D(64, kernel_size=(3, 3), strides=2, padding='valid')(models)
    # models = Activation('relu')(models)
    # models = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(models)
    models = Flatten()(models)
    models = Dense(512)(models)
    models = Activation('relu')(models)
    model = Model(inputs=inp, outputs=models)

    inp1 = Input(shape=(28, 28, 1)) # 创建输入
    inp2 = Input(shape=(28, 28, 1)) # 创建输入2
    model_1 = model(inp1) # 孪生网络中的一个特征提取分支
    model_2 = model(inp2) # 孪生网络中的另一个特征提取分支
    merge_layers = concatenate([model_1, model_2]) # 进行融合,使用的是默认的sum,即简单的相加

  else:
    input1 = FeatureNetwork()           # 孪生网络中的一个特征提取
    input2 = FeatureNetwork()           # 孪生网络中的另一个特征提取
    for layer in input2.layers:          # 这个for循环一定要加,否则网络重名会出错。
      layer.name = layer.name + str("_2")
    inp1 = input1.input
    inp2 = input2.input
    merge_layers = concatenate([input1.output, input2.output])    # 进行融合,使用的是默认的sum,即简单的相加
  fc1 = Dense(1024, activation='relu')(merge_layers)
  fc2 = Dense(1024, activation='relu')(fc1)
  fc3 = Dense(2, activation='softmax')(fc2)

  class_models = Model(inputs=[inp1, inp2], outputs=[fc3])
  return class_models

如何看是否真的是权值共享呢?直接对比特征提取部分的网络参数个数!

不共享参数模型的参数数量:

使用keras实现孪生网络中的权值共享教程

共享参数模型的参数总量

使用keras实现孪生网络中的权值共享教程

共享参数模型中的特征提取部分的参数量为:

使用keras实现孪生网络中的权值共享教程

由于截图限制,不共享参数模型的特征提取网络参数数量不再展示。其实经过计算,特征提取网络部分的参数数量,不共享参数模型是共享参数的两倍。两个网络总参数量的差值就是,共享模型中,特征提取部分的参数的量

网络结构可视化

不共享权重的网络结构

使用keras实现孪生网络中的权值共享教程

共享参数的网络结构,其中model_1代表的就是特征提取部分。

使用keras实现孪生网络中的权值共享教程

以上这篇使用keras实现孪生网络中的权值共享教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。