Python Tornado批量上传图片并显示功能

(编辑:jimmy 日期: 2025/1/12 浏览:2)

简介

Tornado龙卷风是一个开源的网络服务器框架,它是基于社交聚合网站FriendFeed的实时信息服务开发而来的。2007年由4名Google前软件工程师一起创办了FriendFeed,旨在使用户能够方便地跟踪好友在Facebook和Twitter等多个社交网站上的活动。结果两年后,Facebook宣布收购FriendFeed,交易价格约为5000万美元。而此时FriendFeed只有12名员工。据说这帮人后来又到了Google,搞出了现在的Google App Engine...

我们开发这个Web服务器的主要目的就是为了处理FriendFeed的实时功能 -- 在FriendFeed的应用里每个活动用户都会保持着一个服务器连接。

Tornado使FriendFeed使用的可扩展的非阻塞Web服务器及其相关工具的开源版本,这个Web框架看起来有些像web.py或 Google的webapp,不过为了更加有效地利用非阻塞服务器环境,Tornado这个Web框架还包含了一些相关的有用工具和优化。

区别

Tornado与现代主流的Web服务器框架有着明显的区别:它使非阻塞式的服务器,速度相当快。这得益于其非阻塞的方式和对epoll的运用。Tornado每秒可以处理数以千计的连接,对于实时Web服务来说Tornado确实是一个理想的Web框架。

与Node.js相同的是,Tornado也采用的是单进程单线程异步IO的网络模型,它们都可以编写异步非阻塞的程序。但由于Node.js是Google Chrome V8引擎的JS运行环境或工具包,它属于偏底层的抽象,扩展了JS编写服务器程序的能力,所以基于Node.js会由不同的Web框架。从这个角度来看Node.js和Tornado其实并不在一个层次上。

Tornado是使用Python编写的Web服务器兼Web应用框架,与主流Web服务器框架不同的是,Tornado是异步非阻塞式服务器,得益于非阻塞式和对epoll模型的运用,Tornado是实时Web服务的一个理想框架,它非常适合开发长轮询、WebSocket和需要与每个用户建立持久连接的应用。

特点

  • 轻量级Web框架
  • 异步非阻塞IO处理方式
  • Tornado采用的单进程单线程异步IO的网络模式,其高性能源于Tornado基于Linux的Epoll(UNIX为kqueue)的异步网络IO。
  • 出色的抗负载能力
  • 不依赖多进程或多线程
  • WSGI全栈替代产品
  • WSGI把应用(Application)和服务器(Server)结合起来,Tornado既可以是WSGI应用也可以是WSGI服务。
  • 既是WebServer也是WebFramework

Tornado是基于Bret Taylor和其他人员为FrientFeed所开发的网络服务框架,当FriendFeed被Facebook收购后得以开源。不同于那些最多只能达到1w并发连接的传统网络服务器。Tornado在设计之初就考虑到了性能因素,旨在解决C10K问题,这样的设计使其成为一个拥有高性能的框架。

正文开始

问题描述

Python Tornado批量上传图片并显示,前后端都要显示

思路

1.文件上传

前端FormData上传,后端BytesIO解析

2.显示图片

前端FileReader读取显示,后端matplotlib显示

代码

index.html

<!DOCTYPE html>
<head>
 <title>批量上传图片并显示</title>
 <meta charset='utf-8'>
 <script src='https://cdn.bootcss.com/jquery/3.4.1/jquery.min.js'></script>
</head>

<body>
<input id='send' type='file' accept="image/png, image/jpeg" multiple><br>
</body>
<script>
 $('#send').change(function () {
  var files = $('#send')[0].files;
  var form = new FormData();
  for (var i = 0; i < files.length; i++) {
   //插入form
   var file = files[i];
   console.log(file);
   form.append('files', file);
   //显示图片
   var fileReader = new FileReader();
   fileReader.readAsDataURL(file);
   fileReader.onloadend = function (event) {
    var src = event.target.result;
    $('body').append('<img src=' + src + ' width=200px>');
   }
  }

  //上传
  $.ajax({
   type: 'POST',
   url: '/upload',
   data: form,
   processData: false,
   contentType: false,
   success: function (response) {
    console.log(response)
   }
  });
 })
</script>
</html>

app.py

import tornado.web
import tornado.ioloop
from PIL import Image
from io import BytesIO
import matplotlib.pyplot as plt
from tornado.options import define, options

define("port", default=8888, help="运行端口", type=int)

class MainHandler(tornado.web.RequestHandler):
 def get(self):
  self.render("index.html")
class UploadHandler(tornado.web.RequestHandler):
 def post(self):
  files = self.request.files['files']
  for file in files:
   img = file['body']
   img = Image.open(BytesIO(img)).convert('RGB')
   plt.imshow(img)
   plt.show()

if __name__ == "__main__":
 app = tornado.web.Application(
  [
   (r"/", MainHandler),
   (r"/upload", UploadHandler),
  ],
 )
 app.listen(options.port)
 print("http://localhost:{}/".format(options.port))
 tornado.ioloop.IOLoop.current().start()

效果

前端

Python Tornado批量上传图片并显示功能

后端

Python Tornado批量上传图片并显示功能

总结

一句话新闻

Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。