(编辑:jimmy 日期: 2025/1/12 浏览:2)
使用Python爬虫库requests多线程抓取猫眼电影TOP100思路:
按F12查看网页源代码发现每一个电影的信息都在“<dd></dd>”标签之中。
点开之后,信息如下:
在浏览器中打开猫眼电影网站,点击“榜单”,再点击“TOP100榜”如下图:
接下来通过以下代码获取网页源代码:
#-*-coding:utf-8-*- import requests from requests.exceptions import RequestException #猫眼电影网站有反爬虫措施,设置headers后可以爬取 headers = { 'Content-Type': 'text/plain; charset=UTF-8', 'Origin':'https://maoyan.com', 'Referer':'https://maoyan.com/board/4', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' } #爬取网页源代码 def get_one_page(url,headers): try: response =requests.get(url,headers =headers) if response.status_code == 200: return response.text return None except RequestsException: return None def main(): url = "https://maoyan.com/board/4" html = get_one_page(url,headers) print(html) if __name__ == '__main__': main()
执行结果如下:
上图标示信息即为要提取的信息,代码实现如下:
#-*-coding:utf-8-*- import requests import re from requests.exceptions import RequestException #猫眼电影网站有反爬虫措施,设置headers后可以爬取 headers = { 'Content-Type': 'text/plain; charset=UTF-8', 'Origin':'https://maoyan.com', 'Referer':'https://maoyan.com/board/4', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' } #爬取网页源代码 def get_one_page(url,headers): try: response =requests.get(url,headers =headers) if response.status_code == 200: return response.text return None except RequestsException: return None #正则表达式提取信息 def parse_one_page(html): pattern = re.compile('<dd>.*"(.*".*"><a' +'.*?>(.*">(.*">(.*">(.*">(.*"https://maoyan.com/board/4" html = get_one_page(url,headers) for item in parse_one_page(html): print(item) if __name__ == '__main__': main()
执行结果如下:
上边代码实现单页的信息抓取,要想爬取100个电影的信息,先观察每一页url的变化,点开每一页我们会发现url进行变化,原url后面多了‘?offset=0',且offset的值变化从0,10,20,变化如下:
代码实现如下:
#-*-coding:utf-8-*- import requests import re import json import os from requests.exceptions import RequestException #猫眼电影网站有反爬虫措施,设置headers后可以爬取 headers = { 'Content-Type': 'text/plain; charset=UTF-8', 'Origin':'https://maoyan.com', 'Referer':'https://maoyan.com/board/4', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' } #爬取网页源代码 def get_one_page(url,headers): try: response =requests.get(url,headers =headers) if response.status_code == 200: return response.text return None except RequestsException: return None #正则表达式提取信息 def parse_one_page(html): pattern = re.compile('<dd>.*"(.*".*"><a' +'.*?>(.*">(.*">(.*">(.*">(.*"https://maoyan.com/board/4"+str(offset) html = get_one_page(url,headers) if not os.path.exists('covers'): os.mkdir('covers') for item in parse_one_page(html): print(item) write_to_file(item) save_image_file(item['image'],'covers/'+item['title']+'.jpg') if __name__ == '__main__': #对每一页信息进行爬取 for i in range(10): main(i*10)
爬取结果如下:
进行比较,发现多线程爬取时间明显较快:
多线程:
以下为完整代码:
#-*-coding:utf-8-*- import requests import re import json import os from requests.exceptions import RequestException from multiprocessing import Pool #猫眼电影网站有反爬虫措施,设置headers后可以爬取 headers = { 'Content-Type': 'text/plain; charset=UTF-8', 'Origin':'https://maoyan.com', 'Referer':'https://maoyan.com/board/4', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' } #爬取网页源代码 def get_one_page(url,headers): try: response =requests.get(url,headers =headers) if response.status_code == 200: return response.text return None except RequestsException: return None #正则表达式提取信息 def parse_one_page(html): pattern = re.compile('<dd>.*"(.*".*"><a' +'.*?>(.*">(.*">(.*">(.*">(.*"https://maoyan.com/board/4"+str(offset) html = get_one_page(url,headers) if not os.path.exists('covers'): os.mkdir('covers') for item in parse_one_page(html): print(item) write_to_file(item) save_image_file(item['image'],'covers/'+item['title']+'.jpg') if __name__ == '__main__': #对每一页信息进行爬取 pool = Pool() pool.map(main,[i*10 for i in range(10)]) pool.close() pool.join()
本文主要讲解了使用Python爬虫库requests多线程抓取猫眼电影TOP100数据的实例,更多关于Python爬虫库的知识请查看下面的相关链接