(编辑:jimmy 日期: 2025/1/12 浏览:2)
1、获取指定位置的点值:
OutputFile = open(statisticResultTXT, 'w') cellvalue=arcpy.GetCellValue_management(inputfilepath+filenname+".tif",staionXY, "1") OutputFile.write(stationID+"_"+filenname+""+str(cellvalue)+'\n') OutputFile.close()
2、获取区域的均值极值
utputFile = open(statisticResult, 'w') env.workspace = ('E:\loessplateau\ET_Spline\extract_year') rlist = arcpy.ListRasters('*','tif') for file in rlist: minValueInfo= arcpy.GetRasterProperties_management(file,'MINIMUM') minValue = minValueInfo.getOutput(0) maxValueInfo = arcpy.GetRasterProperties_management(file,'MAXIMUM') maxValue = maxValueInfo.getOutput(0) meanValueInfo = arcpy.GetRasterProperties_management(file,'MEAN') meanValue = meanValueInfo.getOutput(0) print file + ',' + str(minValue) + ',' + str(maxValue) + ',' + str(meanValue) +'\n' OutputFile.write(file + ',' + str(minValue) + ',' + str(maxValue) + ',' + str(meanValue) +'\n') OutputFile.close()
补充知识:python_计算格点数据降水变化斜率
我就废话不多说了,还是直接看代码吧!
import numpy as np import pandas as pd import codecs path=r'C:\try.csv' #读取格点数据CSV data=pd.read_csv(path,encoding='gbk') outpath=r'C:\rate.csv'#新建存放斜率的CSV file_csv = codecs.open(outpath,'w+','utf-8') #打开方式 data1=data.T #转置 n=80 #格点数 m=17 #年数 sl=[] #空列表 for i in list(range(0,80)):#循环计算80个格点的变化斜率 print (i) sp=[] y=data1[i] y=y.values for k in range(0,m-1): for j in range(k+1,m): print(k,j) s=(y[j]-y[k])/(j-k) #计算斜率 sp.append(s) sl.append(np.median(sp)) slop= pd.DataFrame(sl) slop.to_csv(outpath,header=['slop']) #将SLOP写入CSV
以上这篇python获取栅格点和面值的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。