python实现堆排序的实例讲解

(编辑:jimmy 日期: 2025/1/13 浏览:2)

堆排序

堆是一种完全二叉树(是除了最后一层,其它每一层都被完全填充,保持所有节点都向左对齐),首先需要知道概念:最大堆问题,最大堆就是根节点比子节点值都大,并且所有根节点都满足,那么称它为最大堆。反之最小堆。

当已有最大堆,如下图,首先将7提出,然后将堆中最后一个元素放到顶点上,此时这个堆不满足最大堆了,那么我们要给它构建成最大堆,需要找到此时堆中对打元素然后交换,此时最大值为6,符合最大堆后,我们将6提取出来,然后将堆中最后一个元素放到堆的顶部...以此类推。最后提取的数值7,6,5,4,3,2,1

python实现堆排序的实例讲解

那么在维护一个最大堆过程中,最多进行交换次数决定了此算法复杂度,但交换次数与树的高度有关:

"htmlcode">

from collections import deque


def swap_param(L, i, j):
 # 堆顶与最后元素交换
 L[i], L[j] = L[j], L[i]
 return L

def heap_adjust(L, start, end):
 #构造成大根堆
 temp = L[start]
 i = start
 j = 2 * i
 while j <= end:
 # 判断左右子节点,取两个子节点最大索引
 if (j < end) and (L[j] < L[j + 1]):
  j += 1
 # 判断根节点与子节点比较,如果子节点大于根节点,子节点赋值给根节点
 if temp < L[j]:
  L[i] = L[j]
  i = j
  j = 2 * i
 else:
  break
 # 再把 原来根节点值赋值给子节点上
 L[i] = temp

def heap_sort(L):
 L_length = len(L) - 1

 first_sort_count = L_length // 2
 for i in range(first_sort_count):
 heap_adjust(L, first_sort_count - i, L_length)

 for i in range(L_length - 1):
 L = swap_param(L, 1, L_length - i)
 heap_adjust(L, 1, L_length - i - 1)

 return [L[i] for i in range(1, len(L))]

def main():
 L = deque([50, 16, 30, 10, 60, 90, 2, 80, 70])
 L.appendleft(0)
 print(heap_sort(L))

main()

基础知识点扩展:

堆排序

堆栈是计算机的两种最基本的数据结构。堆的特点就是FIFO(first in first out)先进先出,这里的话我觉得可以理解成树的结构。堆在接收数据的时候先接收的数据会被先弹出。

堆排序节点访问和操作定义

堆节点的访问

在这里我们借用wiki的定义来说明:

通常堆是通过一维数组来实现的。在阵列起始位置为0的情况中

  • 父节点i的左子节点在位置(2*i+1);
  • 父节点i的右子节点在位置(2*i+2);
  • 子节点i的父节点在位置floor((i-1)/2);