(编辑:jimmy 日期: 2025/1/13 浏览:2)
pytorch里面的maxpool,有一个属性叫ceil_mode,这个属性在api里面的解释是
ceil_mode: when True, will use ceil instead of floor to compute the output shape
也就是说,在计算输出的shape的时候,如果ceil_mode的值为True,那么则用天花板模式,否则用地板模式。
???
举两个例子就明白了。
# coding:utf-8 import torch import torch.nn as nn from torch.autograd import Variable class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.maxp = nn.MaxPool2d(kernel_size=2, ceil_mode=False) def forward(self, x): x = self.maxp(x) return x square_size = 6 inputs = torch.randn(1, 1, square_size, square_size) for i in range(square_size): inputs[0][0][i] = i * torch.ones(square_size) inputs = Variable(inputs) print(inputs) net = Net() outputs = net(inputs) print(outputs.size()) print(outputs)
在上面的代码中,无论ceil_mode是True or False,结果都是一样
但是如果设置square_size=5,那么
当ceil_mode=True
Variable containing:
(0 ,0 ,.,.) =
0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5
[torch.FloatTensor of size 1x1x6x6]
torch.Size([1, 1, 3, 3])
Variable containing:
(0 ,0 ,.,.) =
1 1 1
3 3 3
5 5 5
[torch.FloatTensor of size 1x1x3x3]
在上面的代码中,无论ceil_mode是True or False,结果都是一样
但是如果设置square_size=5,那么
当ceil_mode=True
Variable containing:
(0 ,0 ,.,.) =
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
[torch.FloatTensor of size 1x1x5x5]
torch.Size([1, 1, 3, 3])
Variable containing:(0 ,0 ,.,.) =
1 1 1
3 3 3
4 4 4
[torch.FloatTensor of size 1x1x3x3]
当ceil_mode=False
Variable containing:
(0 ,0 ,.,.) =
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
[torch.FloatTensor of size 1x1x5x5]
torch.Size([1, 1, 2, 2])
Variable containing:
(0 ,0 ,.,.) =
1 1
3 3
[torch.FloatTensor of size 1x1x2x2]
所以ceil模式就是会把不足square_size的边给保留下来,单独另算,或者也可以理解为在原来的数据上补充了值为-NAN的边。而floor模式则是直接把不足square_size的边给舍弃了。
以上这篇Pytorch maxpool的ceil_mode用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。