Pytorch maxpool的ceil_mode用法

(编辑:jimmy 日期: 2025/1/13 浏览:2)

pytorch里面的maxpool,有一个属性叫ceil_mode,这个属性在api里面的解释是

ceil_mode: when True, will use ceil instead of floor to compute the output shape

也就是说,在计算输出的shape的时候,如果ceil_mode的值为True,那么则用天花板模式,否则用地板模式

???

举两个例子就明白了。

# coding:utf-8
import torch
import torch.nn as nn
from torch.autograd import Variable
 
 
class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.maxp = nn.MaxPool2d(kernel_size=2, ceil_mode=False)
 
  def forward(self, x):
    x = self.maxp(x)
    return x
 
square_size = 6
inputs = torch.randn(1, 1, square_size, square_size)
for i in range(square_size):
  inputs[0][0][i] = i * torch.ones(square_size)
inputs = Variable(inputs)
print(inputs)
 
net = Net()
outputs = net(inputs)
print(outputs.size())
print(outputs)

在上面的代码中,无论ceil_mode是True or False,结果都是一样

但是如果设置square_size=5,那么

当ceil_mode=True

Variable containing:

(0 ,0 ,.,.) =

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

[torch.FloatTensor of size 1x1x6x6]

torch.Size([1, 1, 3, 3])

Variable containing:

(0 ,0 ,.,.) =

1 1 1

3 3 3

5 5 5

[torch.FloatTensor of size 1x1x3x3]

在上面的代码中,无论ceil_mode是True or False,结果都是一样

但是如果设置square_size=5,那么

当ceil_mode=True

Variable containing:

(0 ,0 ,.,.) =

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

[torch.FloatTensor of size 1x1x5x5]
torch.Size([1, 1, 3, 3])
Variable containing:

(0 ,0 ,.,.) =

1 1 1

3 3 3

4 4 4

[torch.FloatTensor of size 1x1x3x3]

当ceil_mode=False

Variable containing:

(0 ,0 ,.,.) =

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

[torch.FloatTensor of size 1x1x5x5]

torch.Size([1, 1, 2, 2])

Variable containing:

(0 ,0 ,.,.) =

1 1

3 3

[torch.FloatTensor of size 1x1x2x2]

所以ceil模式就是会把不足square_size的边给保留下来,单独另算,或者也可以理解为在原来的数据上补充了值为-NAN的边。floor模式则是直接把不足square_size的边给舍弃了。

以上这篇Pytorch maxpool的ceil_mode用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。