Tensorflow实现部分参数梯度更新操作

(编辑:jimmy 日期: 2025/1/14 浏览:2)

在深度学习中,迁移学习经常被使用,在大数据集上预训练的模型迁移到特定的任务,往往需要保持模型参数不变,而微调与任务相关的模型层。

本文主要介绍,使用tensorflow部分更新模型参数的方法。

1. 根据Variable scope剔除需要固定参数的变量

def get_variable_via_scope(scope_lst):
  vars = []
  for sc in scope_lst:
    sc_variable = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,scope=scope)
    vars.extend(sc_variable)
  return vars
 
trainable_vars = tf.trainable_variables()
no_change_scope = ['your_unchange_scope_name']
 
no_change_vars = get_variable_via_scope(no_change_scope)
 
for v in no_change_vars:
  trainable_vars.remove(v)
 
grads, _ = tf.gradients(loss, trainable_vars)
 
optimizer = tf.train.AdamOptimizer(lr)
 
train_op = optimizer.apply_gradient(zip(grads, trainable_vars), global_step=global_step)

2. 使用tf.stop_gradient()函数

在建立Graph过程中使用该函数,非常简洁地避免了使用scope获取参数

3. 一个矩阵中部分行或列参数更新

如果一个矩阵,只有部分行或列需要更新参数,其它保持不变,该场景很常见,例如word embedding中,一些预定义的领域相关词保持不变(使用领域相关word embedding初始化),而另一些通用词变化。

import tensorflow as tf
import numpy as np
 
def entry_stop_gradients(target, mask):
  mask_h = tf.abs(mask-1)
  return tf.stop_gradient(mask_h * target) + mask * target
 
mask = np.array([1., 0, 1, 1, 0, 0, 1, 1, 0, 1])
mask_h = np.abs(mask-1)
 
emb = tf.constant(np.ones([10, 5]))
 
matrix = entry_stop_gradients(emb, tf.expand_dims(mask,1))
 
parm = np.random.randn(5, 1)
t_parm = tf.constant(parm)
 
loss = tf.reduce_sum(tf.matmul(matrix, t_parm))
grad1 = tf.gradients(loss, emb)
grad2 = tf.gradients(loss, matrix)
print matrix
with tf.Session() as sess:
  print sess.run(loss)
  print sess.run([grad1, grad2])

以上这篇Tensorflow实现部分参数梯度更新操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?